Low Energy Fusion for a Safe and Compact Neutron Source
نویسنده
چکیده
Neutrons are primarily produced at large international facilities using either spallation reactions or nuclear fission. There is a demand for small scale neutron production for use at hospitals and borders for a variety of applications. Isolated fission sources and sealed tube deuterium-tritium fusors are able to provide a reliable neutron flux at small scale but are impractical due to the associated radioactivity. A beam of protons or deuterons accelerated onto a thin target will undergo a fusion reaction resulting in the emission of a quasi-monochromatic neutron beam. The total flux and energy spectrum of the neutrons produced through fusion is primarily dependent on target material, target thickness, beam energy and projectile. The use of neutrons for security screening at border crossings, ports and airports has the potential to drastically improve threat detection and contents verification. Monte Carlo code MCNPX is being used to investigate the most suitable target and beam characteristics for a neutron source for security applications.
منابع مشابه
The study of neutron interactions with soft tissue using Monte Carlo simulation using the source PF
The most important part of neutron therapy treatment (NCT1) is to achieve a beam of neutrons with suitable energy and intensity, as well as the least pollution and damage. In this study, in order to correct the neutron spectrum from D-D fusion and its use in neutron therapy, a set of different materials which are called the Beam Shaping Assembly (BSA) was placed in the direction of energy 2.45 ...
متن کاملبررسی امکان استفاده از چشمه های نوترونی رادیوایزوتوپی در نوترون درمانی با بور
Background : Performing successful BNCT experiments needs a suitable neutron source. Important factors of the neutron beam are flux and energy that are very important in the selection of neutron source. In most centers that use this method for treatment, reactor is a neutron source, which according to characteristics of the reactor appropriated neutrons are very high. High cost of constructin...
متن کاملResearch on fusion neutron sources
The use of fusion devices as powerful neutron sources has been discussed for decades. Whereas the successful route to a commercial fusion power reactor demands steady state stable operation combined with the high efficiency required to make electricity production economic, the alternative approach to advancing the use of fusion is free of many of complications connected with the requirements fo...
متن کاملDesign and Simulation of Photoneutron Source by MCNPX Monte Carlo Code for Boron Neutron Capture Therapy
Introduction Electron linear accelerator (LINAC) can be used for neutron production in Boron Neutron Capture Therapy (BNCT). BNCT is an external radiotherapeutic method for the treatment of some cancers. In this study, Varian 2300 C/D LINAC was simulated as an electron accelerator-based photoneutron source to provide a suitable neutron flux for BNCT. Materials and Methods Photoneutron sources w...
متن کاملShielding studies on a total-body neutron activation facility
Background: Prompt gamma neutron activation analysis (PGNAA) is known as a non-invasive technique capable of measuring elemental concentration in voluminous samples in a short period of time. Also it is a valuable diagnostic tool for total body elemental measurements. 252Cf and 241Am-Be sources which are usually used in this method, generate not only neutrons, but also emit high-energy and unwa...
متن کامل